http://otterbeast.livejournal.com/ ([identity profile] otterbeast.livejournal.com) wrote in [community profile] useless_faq2011-07-05 06:48 pm

Работа и расстояние.

Под работой в учебниках физики иногда понимают произведение силы на расстояние, иногда - мощности на время, а иногда - затраченную энергию. Что интересно, что из этих трех вариантов выбирать для правильного подсчета, выбирается по разному. Например - если надо посчитать работу двигателей вертолета на поддержание его в воздухе (в режиме висения), умножают мощность двигателя на время.

Теперь вопрос. Чему равна работа на поддержание в воздухе вертолета с работающим двигателем, если он, кроме того, подвешен на крюк подъемного крана?

[identity profile] termar.livejournal.com 2011-07-12 10:44 am (UTC)(link)
Работа - это действительно сила, умноженная на расстояние. Только в данном случае расстояние взято не то. Необходимо сначала выделить точку приложения силы, а потом умножить на расстояние, пройденное этой точкой.

Так при чём тут расстояние, пройденное ракетой? Вот если бы вы разгоняли ракету, толкая её палкой, тогда точкой приложения силы была бы точка контакта палки и ракеты. В этом случае ваше рассуждение было бы справедливо, и вам действительно пришлось бы развивать всё большую мощность, чтобы толкать ракету с постоянной силой.

[identity profile] termar.livejournal.com 2011-07-13 05:54 am (UTC)(link)
--- Именно это я и сделал - умножил расстояние, пройденное ракетой на силу.

Ну что ж, вы правы. Мощность ракеты с точки зрения наземного наблюдателя действительно постоянно увеличивается.

P = dE/dt = d(m*v^2/2)/dt = m*v*dv/dt = m*a*t*d(at)/dt = m*a^2*t = F^2*t/m

Да, мощность увеличивается пропорционально времени. А в чём вы видите парадокс?

[identity profile] asmgrinder.livejournal.com 2011-07-31 11:24 am (UTC)(link)
Парадокс в том, что мощность интуитивно связывается с силой, а сила в данном примере постоянна. С точки зрения математики - да, противоречий нет, но правильнее наверное было бы назвать это не мощностью, а как-то иначе.
Ещё один момент - в этом примере работа равна приросту кинетической энергии ракеты, а последняя в свою очередь пропорциональна квадрату скорости, что и приводит к квадратичному росту работы, и, соответственно мощности.
Знакомый сначала думал, что чем выше скорость, тем больше мощности надо прилагать. С точки зрения определения мощности - так и есть, только вот прикладываемая сила при этом останется той же самой. Парадокс?

[identity profile] termar.livejournal.com 2011-08-01 02:54 am (UTC)(link)
--- С точки зрения определения мощности - так и есть, только вот прикладываемая сила при этом останется той же самой. Парадокс?

Нет, не парадокс, а ошибка интуитивного представления.

[identity profile] asmgrinder.livejournal.com 2011-08-01 11:14 am (UTC)(link)
Вот я и говорю - надо было назвать иначе - сбивает с толку. А детишкам каково? ;)

[identity profile] termar.livejournal.com 2011-08-02 03:15 am (UTC)(link)
Что именно сбивает с толку? Ваше представление о том, что мощность зависит только от силы? Так это неправильное представление. Меняйте его.

[identity profile] asmgrinder.livejournal.com 2011-07-31 11:28 am (UTC)(link)
> Да, мощность увеличивается пропорционально времени. А в чём вы видите парадокс?

Пропорционально скорости. Если ту же самую ракету запустить в атмосфере на постоянной высоте, то скорость в конце концов станет постоянной и мощность расти не будет, т.к. за единицу времени ракета будет проходить одно и то же расстояние.

[identity profile] termar.livejournal.com 2011-08-01 02:57 am (UTC)(link)
В формулах не учитывалось сопротивление среды. Поэтому в вакууме - пропорционально времени.
(с точностью до релятивистских поправок).

[identity profile] asmgrinder.livejournal.com 2011-08-01 11:35 am (UTC)(link)
В данном примере - и скорости, и времени. Вообще - скорости.

[identity profile] termar.livejournal.com 2011-08-02 03:16 am (UTC)(link)
Ну, вообще-то от расстояния. Но в данном примере расстояние является простой функцией времени.