http://havah-nagilah.livejournal.com/ (
havah-nagilah.livejournal.com) wrote in
useless_faq2014-08-09 02:09 am
![[identity profile]](https://www.dreamwidth.org/img/silk/identity/openid.png)
![[community profile]](https://www.dreamwidth.org/img/silk/identity/community.png)
Не могу придумать заголовок, вот такие дела. Шутки не будет.
Навеяно просмотром передачи "Эвакуация Земли" по NatGeo, в частности - эпизодом "Затопленная Земля". Для тех, кто не смотрел: там обсуждается гипотетическое столкновение Луны с гигантским ледяным астероидом, как следствие - образование вокруг Земли аккреционного диска из мелких и не очень мелких ледяных частиц, выпадение их в виде осадков, а также будущее человечества а-ля "Водный мир".
В связи с этим возник вопрос: насколько Земля сможет нарастить свою "водную массу", получая подачки извне в виде астероидов (пусть они будут почти полностью изо льда, каждый - массой, скажем, в 1т и поступать более-менее регулярно). В фильме был рассмотрен вариант, что уровень воды в Мировом океане в итоге поднялся на 9 тыс. метров. Сможет ли он увеличиться на 20 тысяч? на 100? на 200 тысяч? С какого момента вода перестанет удерживаться на поверхности Земли и станет испаряться в космос?
В связи с этим возник вопрос: насколько Земля сможет нарастить свою "водную массу", получая подачки извне в виде астероидов (пусть они будут почти полностью изо льда, каждый - массой, скажем, в 1т и поступать более-менее регулярно). В фильме был рассмотрен вариант, что уровень воды в Мировом океане в итоге поднялся на 9 тыс. метров. Сможет ли он увеличиться на 20 тысяч? на 100? на 200 тысяч? С какого момента вода перестанет удерживаться на поверхности Земли и станет испаряться в космос?
no subject
g=(1+k(R3-1)/R2
где k - плотность воды относительно средней плотности существующей Земли. Эта величина имеет минимум в точке 2.08, равный 0.567g, за которым следует возрастание по кривой, приближающейся асимптотически к прямой пропорциональности радиусу. Однако такой расчёт условен, поскольку при таких давлениях уже нельзя пренебречь сжимаемостью воды. Впрочем, видно, что, когда толщина слоя воды десятикратно превзойдёт исходный радиус Земли, сила тяжести удвоится.